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Quantum transport through cantori

N. T. Maitra1,2,* and E. J. Heller1,2,3

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138
2Harvard-Smithsonian Center for Astrophysics, Harvard University, Cambridge, Massachusetts 02138

3Department of Chemistry, Harvard University, Cambridge, Masschusetts 02138
~Received 4 February 1999; revised manuscript received 2 December 1999!

We study the effect of classical cantori in quantum mechanics, extending previous results by several groups.
We find that cantori form exponential barriers to quantum transport not only when Planck’s constant exceeds
the flux through the cantorus but also when it is smaller than the flux. The mechanism of localization in the two
cases is different, and we describe the switch from dynamical localization to a mechanism we call ‘‘retunnel-
ing’’ as Planck’s constant increases. We investigate the\ dependence of the exponential decay for retunneling
and find that the\20.66 coefficient found previously at criticality appears to hold also away from criticality
providedp\ is large enough compared to the flux. Numerical evidence as well as an analytic argument are
given. Our final contribution to this subject is a phase space view of cantori in quantum mechanics. We
illustrate our results using the whisker map.

PACS number~s!: 05.45.2a, 03.65.Sq
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I. INTRODUCTION

The relation of the quantum mechanics of integrable s
tems to the underlying classical mechanics is well und
stood. Loosely speaking, one may think of the quantum m
chanics as classical probability densities together with pha
determined by classical actions and Maslov indices. In
integrable regime, EBK quantized energy states live on
invariant tori of classical phase space.~To paint the complete
quantum picture and describe classically forbidden proce
such as diffraction and tunneling, extension into comp
coordinates must be made.!

Most systems however are not integrable. The quan
mechanics of systems with a chaotic component is no
well understood, although tremendous progress has b
made in the last 30 years. Much insight has been gained
the statistical properties~e.g., eigenvalue spacing and eige
vector distributions! of the quantum mechanics of fully cha
otic systems@1,2#. Indeed, semiclassical rules hold solid
for the quantization of such systems: the sum may be ov
huge number of paths but is accurate as long as action
ferences between contributions are appreciable. This is o
the case@3#. Near-integrable systems, with their mixed pha
space, are less understood, yet of fundamental importa
since typical atomic and molecular systems fall into t
class. One can gain some understanding of the quantum
havior of such systems by considering the various structu
generic to mixed phase space. States in surviving islet
stability surrounding stable periodic orbits or attached to
variant tori are quantized as in regular systems: such st
lie on tori whose actions satisfy EBK quantization rules. T
phase space area occupied by an islet must be at
Planck’s constant,h/2, in order to be resolved by quantu
mechanics. A quantum wave packet initially lying we
within the islets can only tunnel to get out, with tunnelin

*Present address: Department of Chemistry, University of C
fornia at Berkeley, Berkeley, CA 94720-1460.
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probability depending on Planck’s constant ase2S/\ whereS
is an appropriate action.

Quantum states in the chaotic regions are generally qu
ergodically distributed in the region~however, see Ref.@4#
for scarred states!, but localization of quantum states ma
occur when the classical diffusion time scale is larger th
the quantization time~the time to resolve discrete levels in
phase space volume explored by the diffusion!. In this case
quantum transport across the chaotic region is also expo
tially suppressed but with dramatically different character
tics, in particular a different\ dependence, of the form
e2(•••)\.

The structure that interests us in this paper in a sense
in between integrable and chaotic: cantori, which are
remnants of an irrational winding number torus~KAM sur-
face! at values of the nonlinearity parameter above but cl
to the critical value for break up. How these structures de
the classical transport in phase space has been thorou
studied in pioneering work@5–7#. Remarkable results on th
scaling properties and renormalization group theory nea
cantorus at criticality are now well established@8,9#.

In this paper we extend prior investigations@10–14# of
the manifestations of cantori in quantum mechanics. The
lier studies have included elegant results on the expone
barriers that cantori present to quantum transport@11,13,14#
and on how scaling carries over to quantum mechan
@10,15#. We extend this work in a number of ways. Th
earlier work had shown that cantori act as stronger~exponen-
tial! barriers to transport in quantum mechanics than in c
sical mechanics when\ is big enough that quantum mecha
ics ‘‘sees’’ a closed surface rather than a broken o
However, we show there is also exponential localization
smaller\ through a different mechanism, a dynamical loc
ization effect. We demonstrate the crossover from dynam
localization to tunneling through a ‘‘quantum-mechanica
closed’’ cantorus as\ increases. Only at criticality, when th
cantorus is just about to break up, are the characteristic
the transport quantified in the literature: the\ dependence is

i-
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PRE 61 3621QUANTUM TRANSPORT THROUGH CANTORI
found to bee2(•••)/\0.66
. We find in this paper that this hold

away from criticality as well, providedh is big enough com-
pared to the classical flux crossing the cantorus. We prov
numerical arguments as well as an analytic one for this
havior. We show how considering the evolution of states
the time domain can solidify our understanding about tra
port through cantori as can Husimi plots in phase space

In Sec. II we briefly discuss some properties of cantor
classical mechanics. We illustrate them using a whisker m
We point out that our results hold for generic cantori in a
map due to the universality of the dynamics near a canto
Section III explores the quantum dynamics near such can
discussing in detail the points raised in the previous pa
graph.

The whisker map describes the motion around a separ
in a typical~nonintegrable! system@16–18#. The separatrix is
a ubiquitous structure in the phase space of generic nonli
systems. A first-order analysis of a typical two-dimensio
near-integrable system near a resonance yields a pend
Hamiltonian in a pair of ‘‘slow’’ coordinate-momentum var
ables, with the ‘‘fast’’ action being an adiabatic invariant.
closer look reveals a chaotic layer around the slow variab
pendulum separatrix and a corresponding layer around
fast adiabatically constant action. Typically there is a th
layer of chaos around the separatrix, even for the sma
perturbation. As the perturbation increases, this layer gr
to fill phase space.

The whisker map has the form

I 85I 2k sinu

u85u1l lnU c

I 82I o
U ~mod 2p!. ~1!

This is a mapping in the ‘‘fast’’ variablesI ,u. The parameter
l controls where the structures lie in phase space~islands,
cantori!; properties such as their size and stochasticity
pend on bothl and k. The map has an infinite number o
fixed points

I r5I o6ce22pr /l, u r50 or p, ~2!

where r is an integer. All fixed points withuI r2I ou,lk/4
are unstable. The infinite number of unstable fixed points
this action range accumulate exponentially toI o , their un-
stable manifolds overlapping. The fixed points (u r50,I r
.I o1lk/4) and (u r5p,I r,I o2lk/4) are also unstable
Stable elliptic fixed points exist at (u r5p,I r.I o1lk/4) and
(u r50,I r,I o2lk/4).

An example of the classical whisker map phase spac
given in Fig. 1 where we have chosen parameter valuek
52,l55, seeded 50 random initial conditions, and itera
the map 400 times. The points were plotted at each iterat
The motion appears chaotic for roughlyuI r2I ou,10, except
in the islets. The width of the chaotic layer can be und
stood from transforming the behavior around the first-or
resonances to local standard mappings. Expanding the l
rithmic shearing term around the fixed point action, we fi
that the whisker map is locally

P85P1keffsinu,
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u85u1P8. ~3!

This is a standard map in the variables

S P52
l

I r2I o
~ I 2I o!,u D ~4!

with effective nonlinearity parameter

ks5keff5
lk

I r2I o
. ~5!

A standard map withuksu.kc50.9716354••• is globally
chaotic~see the next section!: a trajectory started in one are
of phase space eventually travels over almost all of it,
cluding only isolated islets of stability which shrink asuksu
grows. This implies that the half widthI c of the chaotic layer
in the whisker map is

I c'lk/kc . ~6!

The degree of stochasticity grows as the action mo
deeper into the stochastic layer:keff increases from critical
(kc) at the layer’s border to infinity in the middle atI o . As a
consequence, deep inside the chaotic layer the motion is
random and leads to diffusion in the action~Sec. II!. Further
out, the phase space has more structure: in addition to
islets of stability, there are cantori, remnants of KAM inva
ant tori which slow down the diffusion. There may be seve
cantori in various stages of disintegration within the lay
increasing in their transport inhibition as the border with t
regular region is approached.

II. CANTORI IN CLASSICAL MECHANICS

Deep inside the stochastic layer the whisker map suf
diffusion in action:

^I ~ t !&5^I ~0!&,
~7!

^I ~ t !2&5^I ~0!2&1Dt, D5k2/2,

where^•••& represents an ensemble average over many
jectories with initial actionI (0). The diffusion out to the
regular region is, however, impeded by barely broken KA
tori ~cantori! further out in the chaotic layer~see Figs. 2 and
3!. ‘‘Cantorus’’ refers to the remnants of an irrational wind

FIG. 1. Classical whisker map phase space:l55,k52, with
I 050 ~see text!.
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FIG. 2. ~left! Classical diffusion in the whisker map,l510: ^DI 2& for a set of initial conditions with vanishing action. The initial slop
agree with Eq. 7.~right! Later, diffusion is impeded by cantori. This graph shows the maximum action in the distribution,l510,k52. Also
a scaled square root of the dispersion in action is shown. The dashed line corresponds to unimpeded diffusion given by Eq.~7!.
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ing number invariant manifold at, or just above, the critic
nonlinearity parameterkc at which the manifold breaks up
At the break-up parameter, the KAM surface acquires
scale-invariant fractal structure. It is an invariant set with
infinite number of infinitesimal gaps@5,19# and it presents
partial barriers to motion for a nonlinearity parameterks
larger thankc , invalidating the diffusion picture.~Of course,
for smallerks they are complete barriers to transport, and
much largerks the cantori disintegrate and diffusion ma
proceed rapidly, as in the chaotic region!. Greene found@20#
that the last surviving KAM curves for the standard map@Eq.
~3!# have winding number6(g6m) whereg5(A511)/2
'1.618 is the golden mean andm is an integer. This curve
remains robust as the magnitude of the standard map pa
eterks increases from 0 tokc50.9716354••• @20#, when it
breaks up and global chaos sets in. The golden mean~and its
integer relatives! is, in a sense, the ‘‘most irrational’’ num
ber: its continued fraction representation is the slowes
converge. Other irrational winding numbersw correspond to
trajectories that lie on an invariant curve under small per
bations but they break up at parametersukc

wu,kc . See Refs.
@8,9,13,20,5–7,21# for more detail.

FIG. 3. Classical evolution of 20 points initially with randomu
and 0,I ,1.l510,k52. The borders of the distribution at eac
time shown are at cantori:t520 shows the cantorus at windin
number 42g22,t5300 shows that at 41g22;t53000 shows that
at 52g22 ~see text!. Finally (t.30 000) the outermost cantorus
penetrated and the distribution spreads to the border with the r
lar region.
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For the whisker map the strongest restraints on diffus
in the chaotic layer arise from cantori with winding numb
6(g6m), for integer m. The unperturbed whisker ma
winding number iswo51/r o , where

r o~ I !5
1

wo
5

l

2p
lnU c

I 2I o
U. ~8!

Typically there are several cantori corresponding to wind
numbersw5m6g22 which are ‘‘effective’’ within the cha-
otic layer, with varying degrees of ‘‘brokenness.’’~Note that
g22512g21522g'0.382.! Those near the outer borde
of the chaotic layer are close to critical and present mu
stronger impediments to diffusion than those further ins
the layer; this is as suggested by the local standard m
parameter at the cantori@Eq. ~5!#. For example, in Figs. 2
and 3, there are three cantori evident, corresponding to
verse winding numbersr of 42g22,41g22, and 52g22 at
uI 2I ou'9.7,15.7,18.2, respectively. These are the values
unperturbed actions: the cantori are actually curved, a
evident in the phase-space pictures. The classical distribu
is slowed at each cantorus for some time, which is longer
further out the cantorus is, before escaping finally into
stochastic layer. Ultimately a trajectory fills the phase sp
~except for the islets of stability! up to the regular region
~Fig. 3!. It is also important to note that each cantorus ha
‘‘width’’ which represents the range in action around th
cantorus in which the transport is slowed down due
closely neighboring irrationals~see also Sec. III B!.

As k increases, the cantori become weaker and the in
ones may disappear as new ones appear at the growing
of the chaotic layer. In Fig. 4 we have zoomed in on t
border between the chaotic and regular regions in the w
ker map with parametersl510,k51.77. These parameter
conspire to give a critical cantorus at winding number
2g22 at actionI 518.7 ~the parameterI o50.5). Although
the cantorus itself is not visible in this picture, which is lim
ited by the number of points iterated, what one can
clearly are the resonance island structures embracing w
the cantorus would be. One can make out a period 2, pe
3, period 5, period 8, and period 13 chain, alternating
tween the two sides of the cantorus. Of course this struc
is not unique to cantori in the whisker map: the periodic or
structure occurs around generic cantori. These periodic or
u-
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are the ‘‘convergents’’ to the KAM surface; they have win
ing numbers which are successive truncations of the con
ued fraction representation of the irrational winding numb
associated with the KAM. For the golden mean, the conv
gents have period given by the Fibonacci sequenceF0
50,F151,Fi 115Fi1Fi 21 with winding numbersFi /Fi 11.
As i→` this number approachesg. The figure does not hav
enough points to resolve the structure beyond the 13th le

The periodic orbit convergents are in a sense respons
for the fractal structure at criticality and the scale invarian
near a cantorus.~In fact it was a study of their stability as
function of the nonlinearity parameter which led Greene
his result regarding the destruction of the last KAM surfa
in the standard map@20#!. There is an extensive literature o
the scaling behavior and renormalization group theo
~both analytic and numeric@8,9,6# near the cantorus to de
scribe the ‘‘structure at all scales.’’! The behavior at critical-
ity has universal characteristics: near the critical break
parameter for other irrational winding numbers and for ot
maps one finds the same scaling exponents@8# and the same
universal map. Thus the scaling relations controlling
classical~and quantum! dynamics near a cantorus are unive
sal. We letm represent the distance from criticality@e.g., for
the standard map Eq.~3!, m5uku2ks5Dk#. Then, asymp-
totically, a map in (u,p) near a generic cantorus is invaria
under the rescaling@8,9,6#

m→dm,

D u→aD u,
~9!

Dp→bDp,

n5Fr 11→Fr;n/w,

whered'1.628 is the scaling exponent for the nonlinear
parameterm;a'21.41(21.69) near u5p(0) and b'
23.07(22.56) nearu5p(0). The last relation expresse
time rescaling,n being the number of iterations of the ma
with scaling exponent given by the irrational winding num
ber of the KAM, e.g., for the golden mean torus ofw5g

FIG. 4. Classical phase-space near a near-critical cantorus a
border of the stochastic layer.
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'1.618. Note that the values ofa andb correspond to those
at the dominant~subdominant! symmetry line; these are line
of fixed points of the involutionsT1 andT2 whose product
gives the original map~see Refs.@8,6#!. The subdominant
symmetry line tends to cross a hyperbolic point of each
riodic convergent, whereas the dominant line contains an
liptic point of each periodic convergent. The essential po
here is that for the standard map of the form in Eq.~3! for
I .I o and keff.0 the dominant and subdominant symme
lines are atp(0), respectively. ForI ,I o ~wherekeff is nega-
tive!, the dominant and subdominant symmetry lines are
0(p), respectively, and the values ofa and b at 0 andp
should be switched. Notice that at both the subdominant
dominant symmetry lines, the product of the phase-sp
scalingsab'4.34.

A. Flux through a cantorus

Perhaps the most important aspect of classical beha
near barely broken tori, for our purposes, is the flux acros
cantorus. This is the fluxDW swept across the cantoral gap
in one iteration of the map. The ‘‘turnstile’’ construction t
compute this is described in Refs.@6,13#. The flux through
the cantorusDW follows a scaling relation that is not diffi
cult to guess from Eqs.~9!:

DW~m!→~ab!21DW~dm!, ~10!

wherem5Dks5uksu2kc . This can be expressed as

DW~m!}mh ~11!

with h5 ln ab/ln d'3.01. That the flux scales as;(Dks)
3

holds for a surprisingly wide range ofks : for the standard
map, the authors in Ref.@21# show numerically that the dif-
fusion in action goes as (Dks)

3 up to ks;2.5.
In Ref. @5#, DW for the golden mean cantorus of the sta

dard map was computed as the limit of that for high-ord
periodic orbit convergents. From that study the proportion
ity factor in Eq.~11! is deduced:

DWkr~ks!'0.7~Dks!
3. ~12!

Appealing to universality, we expect that the dependence
the nonlinearity parameter~i.e., the scaling exponenth)
holds for general one-parameter maps and for cantori at o
noble winding numbers, however, probably with a differe
proportionality constant.

We exploit the fact that the whisker map is locally a sta
dard map to calculate the cantoral flux. Generalizing Eqs.~4!
and ~5! to the neighborhood of a cantorus,I r is replaced by
the action at the cantorus rather than at the fixed point.
though we cannot strictly write the whisker map as a lo
standard map, except close to a fixed point, there certain
a sense in which we can associate an effective standard
parameter and corresponding phase-space scalings anyw
inside the stochastic layer. We have

the
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DW5
uI ct2I ou

l
DWkrS lk

uI ct2I ou D
'0.7

uI ct2I ou
l S lk

uI ct2I ou
2kcD h

~13!

'
0.7ce22p(r 6g22)/l

l

3~lkce2p(r 6g22)/l2kc!
h, ~14!

where the last line specializes to the case of a cantoru
inverse winding numberr 6g22.

There is another way to derive the whisker cantoral fl
from a formula derived in Ref.@13#. Letting DWp/q(R* )
denote the flux through the periodic orbit of winding numb
p/q, one may write

DW'0.37DWp/q~R* !S ln
Rp/q

R*
D h

~15!

whereR is the residue of thep/q periodic orbit andR* is its
value at criticality @20#. @R5(22Tr M )/4 whereM is the
tangent map of the periodic orbit.# There, it is also asserte
that for a cantorus sandwiched between two periodic or
of neighboring rationals~i.e., p8q2pq8561) which have
residues of significantly different size, one may replace
logarithm in Eq.~15! with the combination weighted by th
inverse ‘‘distance’’ from the resonance to the cantorus.
example, for a cantorus with unperturbed inverse wind
number r 61/g2, we have DW'0.37DWr(R* )@(1/
g)ln(Rr /R* )1(1/g2)ln(Rr61 /R* )#h. It is straightforward to
calculate the components of this expression for cantori in
whisker map using the fixed points for the periodic or
pivots on the right-hand side. One obtains, for a cantoru
inverse winding numberr 61/g2

DW'
0.7ce22pr /l

l F 1

g
lnS lkce2pr /l

kc
D

1
1

g2
lnS lkce2p(r 61)/l

kc
D Gh

. ~16!

This was also obtained in Ref.@14#.
We notice this isalmostexactly the same as our earlie

formula~14!: the terms in the large parentheses may be co
bined as

lnS lkce2p(r 6g22)/l

kc
D

which gives the same term as that taken to powerh as in Eq.
~14! once the argument of the logarithm is expanded aro
1. The only difference with Eq.~14!, is then an overall factor
of e62p/(lg2). The difference presumably comes about b
cause in the formula~16! only the closest resonance is a
counted for in the prefactor, but in our formula~14!, an ef-
fective weighted combination from both resonances occ
from the local standard correspondence. We are thus incl
at
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to trust~14! more when calculating the flux. In Sec. III B w
shall provide numerical evidence supporting our approxim
tion.

B. Scaling relations in quantum mechanics

We end this introductory part of the paper by a brief d
cussion on what happens to the scaling relations in a qu
tized system. The effect of scaling on quantum mechan
has been discussed in the literature, e.g., Ref.@10,15,22#. To
first order, the scaling properties carry over to the quanti
motion near a cantorus, provided Planck’s constant is a
scaled: the relation@10,15#

\→uabu\ ~17!

joins Eqs.~9!. However, as time evolves,\ effectively gets
scaled to larger and larger values and eventually beco
larger than the scaling region@10#. At this time, scaling
breaks down as\ is too large to resolve the structures whic
give rise to scaling. The breakdown happens at the timet*
which scales ast* ;\21/g,g5 lnuabu/ln v'3.05. In@10# it is
argued~numerically and also semiclassically! that this is also
the time scale when quantum effects such as interfere
begin to become important. A consequence of this for qu
tum diffusion in the kicked rotor atk.kc is the onset of
localization. Quantum dynamics follows the classical diff
sion, scaling withk as does the flux@;(Dk)3#, but begins to
deviate at times scaling with\ as t* ;\21/g. We refer the
reader to Ref.@10# for graphs of this behavior in the kicke
rotor. There is some diffusion in action aftert* , albeit
slower; the system does not completely localize in the se
of ^Dp2&, not reaching a steady state until much later. T
approach to complete localization is not a simple one.

III. QUANTUM LOCALIZATION IN THE CHAOTIC
LAYER

A. Preliminary observations

We examine the long-time properties of the quantiz
mapvia the time-averaged probability of being in final sta
u f & having started in initial stateu i &:

P~ f ,i !5 lim
T→`

1

T (
t50

T

u^ f uUtu i &u2

5(
n

u^ f un&u2u^ i un&u2, ~18!

where in the last line the sum goes over the quasiene
eigenstates.U is the one-step time evolution operator for th
map

U5e2 il(I 2I o)[ lnuc/(I 2I o)u11]/\eik cosu/\.

For example, in action representation@14,23#,
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^I f uUuI i&5
\

2I c
e2 il(I f2I o)[ lnuc/(I f2I o)u11]

3 (
p50

2(I c /\)21

e2 ip(I f2I i )p/I c1 ik cos(pp\/I c)/\. ~19!

There are two particularly useful representations in wh
to study this object: one is a phase-space representatio~a
Husimi plot!, the other is action space. The phase-space
resentation helps us to understand qualitative aspects o
localization. We take circular coherent states

a~u!5exp@2~u2ua!2/2\1 i I au/\#/~p\!1/4

as final and initial states in Eq.~18!. ua and I a denote the
center coordinates of the coherent state. Figure 5 is a con
plot of the logarithm of the time averaged density in a wh
ker map of l510,k52,\50.2 where the initial coheren
state is centered atu5p,I 50 (I o is 0.1!. The chaotic layer
covers almost all of the shown phase space for these pa
eters. The shading reflects the magnitude, with light be
high and dark low, however, it is important not to be misl
by regions of dense contours which make the region lo
dark when it is not. Such regions indicate a rapid exponen
change in the magnitude of the probability. We see structu
which we recognize from the corresponding classical ph
space: islets of stability centered atuI 2I ou5(12.3,6.6) and
u5p(0) at uI 2I ou.0(,0), respectively. The shading ou
from the initial state indicates a gentle exponential decay
the deep stochastic layer. This meets a series of curved p
pices, one set atuI 2I ou;10, another set atuI 2I ou;16, and
yet another atuI 2I ou;18. The precipices coincide with th
cantori in the stochastic layer and indeed their shapes in
Husimi plot resemble their shapes in the classical ph
space, Fig. 3.

A more efficient way than Eq. 18 to calculate the tim
averaged probability in action involves performing a forwa
and backward fast-fourier transform at each time step@24#:

FIG. 5. Husimi plot with logarithmic contours for the time
averaged probability in the whisker map withl510,k52,\
50.2,I o50.1. Initial state is a coherent state centered atu5p,I
50.
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I c
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where up5pp\/I c . The squared norm of this is the
summed over all times. For the computations we used
programFFTW @25#, which held true to its name~‘‘fastest
Fourier transform in the West’’!.

The logarithmic plots 5 and 6 indicate steep exponen
decay at the cantori. Classically we observed that~noncriti-
cal! cantori quench the fast diffusion deeper in the lay
trajectories take many iterations to get out, but at long tim
they roam uniformly all over all the connected chaotic pha
space. In the quantum case the transport is much more
verely impeded, the probability of long-time penetration b
ing exponentially suppressed. The eigenstates are expo
tially localized in action and consequently transport acr
the layer is much impeded. Typically, the further out in t
stochastic layer the cantorus is, the steeper the ‘‘cliff’’ in t
logarithm of the time-averaged probability~see for example,
Fig. 6!.

Cantori acting as exponential barriers in quantum m
chanics have been discussed before@10,11,13,14#. The local-
ization there results from Planck’s constant exceeding
flux through the cantorus: the quantum mechanics see
closed surface rather than a broken cantorus. This give
barrier, but not an impenetrable one. The quantum sys
can tunnel to get across it. We give this phenomenon
name ‘‘retunneling’’ to distinguish it from ordinary class
cally forbidden tunneling.~The name ‘‘retunneling’’is appro-
priate, because quantum mechanics sets up a blockade w
none exists classically and then tunnels through it.!

A major new point in this work is that cantori can also b
exponential barriers whenh is smaller than the gaps, as we
shall show in Sec. III B. This is due to a dynamical localiz
tion mechanism: when the classical mechanics diffuses
ficiently slowly, the corresponding quantum mechanics

FIG. 6. l510,k52,\50.05 and 0.2,I o50.1, logarithm of the
time-averaged probability in actionI 50. The dashed lines indicat
the cantori~see text!.



th
ce
ri.
ar
u

i-
ns
lo
g
l-

u
ide
ru

la
low
io
g
t

n
ut
lt
h

ts.
7

th
he
n
e
al
in
w
ea

n
l
fo

ra

the

at

rus
ows
be
that
by
ing

he
of
po-

d in

and
on-
e-

k’’

odic.

tes.

ed

an

t-
on

3626 PRE 61N. T. MAITRA AND E. J. HELLER
calizes. Dynamical localization also occurs deep in
chaotic layer; below we discuss similarities and differen
of such localization with dynamical localization at canto
Thus there are two quite different mechanisms which
responsible for the exponential decay at cantori; we disc
them in some detail in Secs. III B and III C. Studying the\
dependence of the time-averaged probability~and also the
explicit time dependence! guides us in this study and ind
cates which mechanism is at work. Our main contributio
in addition to pointing out the existence of a dynamical
calization mechanism at cantori, are to an understandin
the retunneling mechanism\ dependence away from critica
ity, and a new argument for the previously discovered\
dependence at criticality.

As remarked above, the contours of the Husimi meas
of transport near a cantorus from an initial action well ins
the central chaotic zone follow the shape of the canto
This is consistent with the observation in Ref.@21# of the
classical motion near a cantorus in the kicked rotor: the c
sical trajectories in a strip around the cantorus tend to fol
curves parallel to the cantorus, with a much slower diffus
in a direction normal to the cantorus. Our Husimi plots su
gest that the quantized system has a related property:
localization mechanism~be it dynamical or retunneling! re-
spects the local curvature in phase space thatk gives to the
convergents near a cantorus. We expect that the expone
decay occurs not exactly at the golden mean cantorus b
a strip around it, due either to dynamical localization resu
ing from slow classical diffusion or from retunneling throug
other cantori in the strip whose gaps are smaller than\. This
is reinforced by both the Husimi plots and the action plo

Inspecting the time-averaged probability in action, Fig.
it is important to bear in mind both the curvature near
cantorus and the effective width around it within which t
decay occurs, as described above. Monitoring action tra
port corresponds to initiating and checking horizontal lin
in the phase plane. Such a constant action line may initi
touch the curved cantorus band tangentially at one po
affecting where the exponential decay begins. In Fig. 7
focus on the logarithm of the time-averaged probability n
the cantorus at inverse winding number 41g22 in the whis-
ker map withl510,k52. When the initial state is deep i
the chaotic layer at initial actionI 50, a sharp exponentia
decay begins atI 5216 whereas the onset of sharp decay
starting at initial actionI 5215 is at I 5217. The valueI
5216 is the extremal action of the inner end of the canto

FIG. 7. l510,k52 and \50.2, time-averaged probability in
action space, where the initial action isI 5215(L) and I 50(1).
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strip ~not the extremal edge of the cantorus but rather, of
strip surrounding the cantorus!. It is thus the curvature of the
cantorus together with the width of the cantoral strip th
determine the onset atI 5216. The Husimi plot of Fig. 5
supports this. Starting with an action state atI 5215 cuts
across a range of the ‘‘natural’’ curved states in the canto
band so that the quantum time-averaged probability sh
almost no decay until a limiting, extremal action that can
reached by any of the curved cantorus localization bands
the initial action state lies on. This is further elucidated
the Husimi plot of the time-averaged propagator hav
started in the action stateI 5215, as shown in Fig. 8. If the
initial action is changed in such a way that it still touches t
cantoral band in some range of angle, the limiting value
the action changes correspondingly. The onset of the ex
nential decay is at this limiting action,not at the extremalI
of the cantorus. This point has been somewhat neglecte
the kicked-rotor literature.

B. Dynamical localization at cantori

The concept of dynamical localization inhard chaotic
systems came to light in the 1980’s@26–29#, where the stan-
dard map at large kick strength was studied. The energy
momentum were found to be bounded at large times, in c
trast to the diffusive classical behavior. The quantum m
chanics follows the classical behavior up to the ‘‘brea
time, or quantization time,tb;h/dE, when all the quantum
states are resolved and the motion becomes quasiperi
~Of course sincedE depends onh this relation does not
mean that the quantization time scales linearly withh.)
Quantum interference leads to exponentially localized sta
We refer the reader to Refs.@27,30# for a simple argument
~based on the kicked rotor system! which predicts the local-
ization length: the probability distribution of a state center
at actionI cn goes as

e22\(I 2I cn)/D, ~21!

whereD is the classical diffusion constant. In fact one c
check that this relation holds in thedeepchaotic layer in the
whisker map.@The dynamical localization occuring there sa
isfies this relation provided the localization length in acti

FIG. 8. l510,k52,\50.2, initial action stateI 5215.
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PRE 61 3627QUANTUM TRANSPORT THROUGH CANTORI
k2/(2\) is small enough that the distribution does not e
counter a cantorus before this is achieved.#

Classical motion in the scaling region near a noncriti
cantorus is a slow diffusion in action, the diffusion consta
being proportional to the flux transported across the canto
DW @Eq. ~14!#. We may then expect that the quantum cou
terpart displays dynamical localization, similar in princip
to that in the deep chaotic layer. However, the details
quite different: it was shown in Ref.@10# that the onset of
localization happens at a time scaling similar to\21/g and
the subsequent approach to complete localization show
more complicated dependence on time than in the str
chaotic case. We refer the reader to Sec. II B and the re
ences there; in particular to Ref.@10#. The simple argumen
leading to Eq.~21! for the localization length in the stron
chaotic case no longer holds and as a consequence the\ and
DW dependence of the localization length are more com
cated.

The slope of the logarithm of the time-averaged propa
tor gives the exponential decay factor and is inversely rela
to the localization length. In Fig. 9 we have plotted the log
rithm of this slope at an inner cantorus of the whisker m
with l55 andk51.5. This cantorus is at inverse windin
number 11g22 and corresponds to the unperturbed act
;5.68. The extremal value of the cantorus is at;6.4. The
effective standard map parameter for this cantorus iskeff

51.32.
A typical graph of the time-averaged probability near th

cantorus is shown in the top graph of Fig. 10, where
initial state is at 4. Most initial conditions decay with abo
the same slope at the cantori and the error-bars in Fig
account for the variation. Exceptions are when the ini
state lies well in the cantoral strip~see Sec. III A! or when
tunneling interactions into resonances around the cant
enhance the probability of being found there. The slope
corded in Fig. 9 is that at the outer edge of the cantorus

For ln\,24 the slopes increase more slowly than in t
strongly chaotic case, going as\r wherer,1, rather than as
\, as in the deep stochastic layer.r is close to 0.5 in the cas
shown. We findr depends onkeff but is always smaller than
1. For very small\ the localization length would be too larg
to be resolved within the cantoral width. For larger\, the
local slopes at the cantorus reverse behavior and begi

FIG. 9. Slopes at an inner cantorus~winding number 11g22)
as a function of\. The classical parameters arel55,k51.5. The
effective standard map parameter iskeff51.32. The dashed line
have slopes 0.5 and20.66 ~see text!.
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decreaseas \ increases. This heralds the changeover fr
dynamical localization to re-tunneling, to be discussed in
next section.

We note that our small\ results are consistent with th
findings in Ref. @31#. There the authors extract a scalin
function for decay of wavefunctions across resonance zo
from a quantum renormalization map. Using an argum
based smaller values of\ resolving more of the classica
phase space structure, hence higher order periodic con
gents, they explain the qualitative behavior of the\ depen-
dence of the exponential decays within the framework
their renomalization map.

We can examine this in the time domain also, as shown
Fig. 11 and the\50.001,0.008 traces in Fig. 12. The initia
state is atI 50 and all the quantum curves as well as t
classical initially diffuse out at the classical ratek2/2 ~see
Fig. 12!. We notice that for small enough values of\ the
quantum dynamics follows the classical into the cantoral
gion. This is the\ regime we are currently discussing. Th
quantum states then localize, falling away from the class
distribution at various times after that. We shall come ba
to these plots shortly.

As the approach to localization is complicated we can
predict theDW dependence of the localization length oth

FIG. 10. Logarithm of the time-averaged probability near t
cantorus at winding number 11g22, whose outer edge is atI
56.4. The slopes are 3.2, 18, and 6.5 respectively. Note the s
differences on the vertical axis.

FIG. 11. ^DI 2& for the whisker map,l55,k51.5. The dots
represent a classical average, the curves from the top down a
\50.001,0.002,0.008,0.02,0.1, respectively.
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3628 PRE 61N. T. MAITRA AND E. J. HELLER
than to expect that it goes as some positive fractional po
of the flux. We have checked that this is true. Recall t
locally the whisker map is a kicked rotor@Eq. ~3!#. In Fig. 13
we have plotted the slopes of the logarithm of time-avera
probability for the kicked rotor at nonlinearity paramet
keff5lk/uI ct2I ou51.32 corresponding to the whisker p
rametersl55,k51.5 at the cantorus at 11g22. We notice
that the quantum kicked rotor slopes are roughly a facto
1.3 higher than those in the whisker~in the dynamical local-
ization regime!. This supports our formula~14! over that in
Ref. @14# and Eq.~16!: the flux through the whisker cantoru
is that through the corresponding kicked rotor timesuI ct

2I ou/l51.14 whereas that of Eq.~16! says that the facto
relating the two isuI r2I ou/l50.7.

Our main observation in this section is the\r dependence
of the logarithm of the time-averaged transport probability
the vicinity of the cantoral strip, withr being a positive
fraction whenh is smaller than the flux. This supports o
assertion and qualitative observations in the previous
tions that cantori can act as exponential barriers when\
,DW/p, due to a dynamical localization mechanism. T
dependence found in the time domain is consistent with
interpretation that it is a dynamical localization effect.

FIG. 12. ^DI 2& for the whisker map,l55,k51.5. The dots
represent a classical average. The curves from top down are\
50.001 ~line!, 0.008(L),0.02(1). The h represents the maxi
mum action of the classical distribution. The dashed line indica
the initial diffusion of all quantum and classical curves, with diff
sion constant 1.125.

FIG. 13. Slopes of the quantum kicked rotor,ks51.32. The
dashed lines have slope 0.5 and20.66.
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C. Retunneling

At a larger value of\, the time-averaged probability
graph develops a sharp kink at the cantorus~lower two pic-
tures of Fig. 10!; see also Fig. 9 for log\.24. This signifies
the beginning of a different type of localization mechanis
at the cantorus. Quantum diffusion cannot happen whenh/2
is larger than the flux across a cantorusDW: the quantum
mechanics can no longer resolve the gaps~turnstiles! in the
cantorus when\.DW/p. In fact we first see a kink when
\'0.01 and indeedDW/p50.01 using our formula~14!. In
Fig. 9, the slopes now decrease as\ increases for\.0.01,
whereas they increase as\ does for\ below 0.01. This sup-
ports the idea that it is a different localization mechanis
As the system becomes less classical~i.e., larger\) any
dynamical localization and retunneling effects become str
ger. In dynamical localization the system becomes m
strongly localized as\ increases~so slopes increase!; in the
latter case more tunneling means more transport as\ in-
creases~so slopes decrease!. The slopes plotted in the figure
are again thelocal slopes at the cantorus.~Of course imme-
diately around the cantorus there are other cantori with\
.DW and also resonance chains. This affects the ove
slope or transport property in the region. In this figure we
concerned only with the local slope at the cantorus.!

We can see the distinction between exponential decay
to dynamical localization and tunneling in the time doma
also. First consider again Fig. 11. It is clear that quant
mechanics at\50.1 does not manage to diffuse into th
inner cantoral region, as it collapses at^DI 2&'5.7 just as the
corresponding classical distribution has reached the can
region. To see whether the smaller\ ’s manage to penetrat
the cantorus~without having to resort to tunneling over lon
times!, we focus in on shorter times in Figs. 12 and 14. He
we have also plotted the maximum of a classical distribut
of points with initial I 50 and evenly spaced in angle. Th
dashed line at 6.4 is the outer edge of the cantorus a
1g22: the classical distribution gets held up by this canto
between aboutt540 andt5200. In the range of time plotted
in these two figures, the quantum spread at\50.001 follows
the classical average: in this time regime we can think of t
curve as representing the classical average.~It in fact pen-
etrates this cantorus and then localizes.! The quantum spread
at \50.008 appears to follow the classical into the canto
region and then falls away and localizes shortly before ab
t5200. It localizes within the cantoral strip~with the corre-
sponding localization length in the time-averaged picture

t

s

FIG. 14. As in Fig. 12 but with the quantum data being at\
50.001,0.01,0.02,0.05, respectively.
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PRE 61 3629QUANTUM TRANSPORT THROUGH CANTORI
plotted in Fig. 9!. However, at\50.02 the dynamics neve
makes it to the cantoral strip: the graph falls away from
classical average~and the smaller\ quantum plots! when the
classical maximum reaches the edge of the cantorus.@^DI 2&
can still grow somewhat after that time, when the high
actions in the evolved distribution reach the cantorus. S
sequently, more of the distribution can diffuse and so
expectation valuêDI 2& grows.# Figure 14 shows a simila
plot for different \ ’s. The \50.01,0.02,0.05 curves fal
away from the\50.001~and the classical! when the classi-
cal maximum strikes the outer edge of the cantorus. T
they all fall away at the same time is another indication t
the cantorus presents a barrier to diffusion through wh
they can only tunnel.~If it was a dynamical localization ef
fect that we were seeing, different\ ’s would fall away at
different times.!

From Figs. 9 and 13 we observe that the\ dependence o
the retunneling does not go ase2aDI /\ as in ordinary tunnel-
ing across a KAM torus or a potential barrier. Rather, wh
\ is somewhat bigger thanDW it fits a dependence more a
e2aDI /\s

where s is a fraction close to 0.66. When\
.DW or a bit larger, the dependence is weaker. In Fig.
we have considered a cantorus closer to criticality: this is
further out in the chaotic layer of the same whisker map
has inverse winding number 22g22, with unperturbed ac-
tion 7.64 and effective standard map parameterkeff'0.98.
Again, the \ dependence of the retunneling in this ne
critital cantorus is close toe2aDI /\0.66

. At criticality, this ex-
ponent has been previously found in the quantum kic
rotor, but here we are claiming a wider applicability, whi
we now discuss.

For acritical cantorus (DW50) of the kicked rotor it has
been found numerically that the tunneling probability goes
\2s where s'0.66 @11#. In Ref. @10#, this exponent is
shown to be related to scaling exponents in this region.
give a different but related argument to that in Ref.@10#: one
based on perturbation theory. Consider the basis of defor
action states, which have curvature in phase space follow
the curvature of the nearby cantorus. Let us label these s
by their extremal value of actionuI m

ex&. Then, in the neigh-
borhood of a near-critical cantorus, a transition between
such curved statesuI m

ex& and uI n
ex& is very weak; as we have

seen in the Husimi plots, the transition is exponentia
small, and in the classical picture, trajectories follow alo
the curve but transport between different curves is very sl

FIG. 15. Slope at the near-critical cantoruskeff50.98 ~winding
number 22g22 with l55,k51.5). The slope of the dashed line
20.66.
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In such a case, we might expect a perturbation matrix e
ment could well give the transition probability amplitude a
hence the tunneling rate across the cantorus. Ifv is the ap-
propriate perturbation potential for this, then

^I m
exuvuI n

ex&5v~DI ,\,Dk!

5b2rv~b rDI ,uabur\,d rDk!, ~22!

where in the first step we have expressed the amplitud
terms of all the parameters it could depend on and in
second step we have used scaling properties@see Eqs.~9! and
17!#. We use the shorthandDI for I m

ex2I n
ex. Let us first con-

sider a critical cantorus whereDk50. r is arbitrary and at
criticality we can choose it such that all the\ dependence
appears in a factor in front ofDI : letting r 52 ln \/lnuabu,
then

v~DI ,\,0!ucriticality5\sv~\2sDI ,1,0!, ~23!

where

s5S 11
lnuau
lnubu D

21

.

This implies that, in the critical case, whatever the transit
matrix element may be,\ and action appear together a
DI /\s. This gives the tunneling dependence. We note t
this result was also obtained in Ref.@10# where scaling was
invoked inside a time integral whose upper limit extended
infinity. Even though scaling does not hold for most of t
times in the integral, the result holds up numerically: t
exponential dependence of the integral is almost indepen
of time. Why this is so is still an open question.

Near the subdominant symmetry line,s'0.65 whereas
near the dominant symmetry lines'0.76: the numerically
measured value 0.66 is very close to that near the subdo
nant symmetry line. We suggest that the subdominant s
metry line provides the pertinent scaling exponents for t
neling by the following argument: in the cantoral region t
motion follows curves parallel to the cantorus, sampli
many angles. The overall quantum tunneling across
curves will then be dominated by the scaling exponents g
ing the smallests; this is at the subdominant symmetry lin
In Refs. @10,11#, it was suggested that the proximity of th
extremal action of the cantorus to the subdominant symm
line was the reason for the appearance of the subdominas
as the scaling exponent. However, this region does not
tinguish itself from the other angles: we reiterate that
contours near the cantorus closely follow curves paralle
the classical cantorus, as does the classical motion.

To further check the reason for the appearance of
subdominats we compared the slopes for entering the ca
toral region either side. The relevant extremal actions oc
at different values of the angle variable depending on
direction of approach: for example for a whisker cantorus
I .I o , the extremal action from entering at actions below t
cantorus is in the range 0→1 but entering from actions
above the cantorus the extremal action is approximatel
→5. Nonetheless, there was no discernible difference in
slopes in the two cases, and the fit is much better to a 0
slope than to a 0.75 slope.
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3630 PRE 61N. T. MAITRA AND E. J. HELLER
Finally, we comment on the\ dependence for retunnelin
across a cantorus away from criticality. We may say t
such cantori which are noncritical but have\.DW are
‘‘classically open but quantum-mechanically closed.’’ If w
use the samer as in the perturbation theory argument abo
d rDk→\2 ln d/ln abdk. Evaluating the exponent and writing i
terms of the flux, we get

^I m
exuvuI n

ex&5\sv@\2sDI ,1,~DW/\!1/3#. ~24!

So, when\@DW we expect the dependence to tend towa
that of the critical case\2sDI . ~When\ is not appreciably
bigger thanDW, all the\ andDI dependence are not all i
the same factor on the right-hand side and so we can
easily determine a general tunneling dependence for
case.! Our numerical results support this~Figs. 15, 13, and
9!. This is what we might expect: if\@DW ~and still
smaller than the scaling region!, then to the quantum me
chanics, the cantorus and its immediate neighborhood do
look that different from criticality.

IV. SUMMARY

The effect cantori have on quantum transport is a k
question for understanding the dynamics in generic ne
integrable systems. We are not the first to study this:
work of Refs.@11,10# in particular has shed much light o
this subject.~We also note that recent experiments@32# have
investigated the effect of cantori in quantum mechanics.! We
developed this work further and discussed some new effe
Our results are illustrated using the whisker map.

The whisker map is interesting in its own right, since
describes the motion near a separatrix, and separatrices
their chaotic layer are ubiquitous in the phase spaces of
neric systems. We showed how a local effective stand
map parameter can tell us about the degree of stochastici
the chaotic layer in the classical map and also about the
through cantori. The classical dynamics in the chaotic la
is one of fast diffusion deep in the layer, impeded by can
further out in the layer. Classical transport is slowed at
cantori but eventually trajectories make it through and ro
all over the chaotic layer. In contrast, quantum states
exponentially localized throughout the layer, the localizat
length depending on the action. Quantum transport, eve
the long-time limit, is then exponentially suppressed. De
in the chaotic layer, there is dynamical localization similar
r.
n

t

,

s

ot
is

ot

y
r-
e

ts.

ith
e-
rd
in
x
r

ri
e

re
n
in
p

that in the kicked rotor problem at large kick strength. Th
mechanism is well understood. Much stronger localizat
happens at cantori further out in the layer. There may
several effective cantori in the layer, increasing in their
fectiveness in slowing down transport.

The major results concerned localization mechanisms
\ dependences of transport properties at cantori. We poin
out that our results concerning this hold not just for cantor
the whisker map, but rather for any cantori in generic ma
due to the universality of behavior near cantori. We fou
there were two mechanisms resulting in quantum exponen
decay at cantori: one, whenp\,DW, is a dynamical local-
ization similar to that in the deep chaotic layer, the other
p\.DW is a retunneling when quantum mechanics see
closed cantorus, due to the finite\ being too big to resolve
the gaps. Each mechanism has different characteristics a\
dependences than the usual dynamical localization and o
nary tunneling as is described in the text. This is due to
intricate structure of the phase space there and the resu
scaling properties. Which mechanism is at work can be
duced either by looking in the time domain or at a tim
averaged probability.

We also argued that the exponential\ dependence, dis
cussed at the critical kicked rotor cantorus in the literatu
holds for an almost critical cantorus in the whisker map a
for noncritical cantori provided\ is somewhat bigger than
DW. We provide numerical evidence as well as an argum
based on scaling and perturbation theory to support this.
stress again that these properties should hold for generic
tori.

We considered time-averaged probabilities as well as t
development of distributions to demonstrate our numer
results. A final contribution of this paper is a phase-spa
representation of the quantum mechanics which shows
cantoral regions in the quantum mechanics more clearly t
in an action representation. This picture is also useful to b
in mind when considering behavior near cantori and the
set of exponential decay.
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